Chapter 27 p. 751

27
Windows 2000
27.1
Introduction to Windows 2000

27.2
System structure

27.3
The object model and object manager

27.4
The kernel

27.5
Processes, threads and concurrency control

27.6
The I/O subsystem

27.7
The NT filing system, NTFS

27.8
Networking

27.9
Summary

27.1 Introduction to Windows 2000
In 1988 Microsoft decided to design and build an operating system for the 1990s. The existing MS-DOS was designed for hardware and modes of use that were rapidly becoming restrictive, if not obsolete; that is, single-user operation on 8 and 16 bit architectures with primitive support for running multiple processes and without any memory protection between them. The alternative, OS/2, had attempted to be broader in scope but contained substantial portions of assembly language for a uniprocessor CISC architecture (Intel 80286), and could not evolve to take advantage of new RISC processors or of the more conventional memory protection features of subsequent Intel CPUs. Furthermore, experience from academic OS research was becoming available – particularly from Mach and other microkernels.

Dave Cutler was recruited from Digital to lead the development team. The challenge was to build on his previous experience of designing operating systems for computers which sold in their tens of thousands in order to create one for hundreds of millions of PCs. An operating system has a long development period, is long-lived and should therefore be portable to new technology as it becomes available. Work started in 1989 and the team grew from ten to forty or so people providing some 100 person-years of effort. Windows NT was released in 1993 with support for Intel x86, MIPS and Digital Alpha processors. 1994 saw the release of Windows NT 3.51, increasing the system’s performance and adding support for the PowerPC processor. This was followed in 1996 by Windows NT 4.0 and then, adopting a new naming scheme, by Windows 2000.
This case study is based on three books (Custer, 1993; 1994 and Solomon and Russinovich, 2000) which should be consulted for further detail. We recommend them highly for their clear exposition, which assumes no prior knowledge of operating systems and maintains a consistent conceptual framework throughout. We are grateful to Microsoft Press for permission to reproduce figures from these books.

Section 27.2 describes the overall structure of the operating system, showing the layered design and the communication models that it employs. We then describe the two main layers which operate in privileged mode; the executive (Section 27.3) and the kernel (Section 27.4). Section 27.5 describes the structure of processes in terms of the scheduling of the threads operating within them and the organisation of their virtual address spaces. Sections 27.6—27.8 cover communication between processes through I/O devices, the file system and the network.
27.1.1 Design principles
The design set out to provide:

Extensibility – to meet changing market requirements. This has led to a modular object-based structure that allows common functionality (such as controlling access to resources and tracking their usage) to be separated from resource-specific definitions. Device drivers may be loaded and removed dynamically as with the kernel loadable modules popular in UNIX and described in Section 25.2. Common mechanisms are provided for client–server communication between processes.


Portability – to accommodate hardware developments. As with UNIX, the code that operates in privileged mode is written in high level languages, primarily in C with some C++. Assembly language is confined to a hardware-dependent layer.


Scalability – allowing applications to exploit the range of hardware available. This entails support for multi-processor hardware and large physical address spaces. It also requires that the system is structured to make good use of these resources.


Integration into distributed systems having networking capabilities and the ability to interoperate with other operating systems.

Reliability and robustness – the system should protect itself from internal errors, crashes and external attack. A modular structure helps to confine and locate a source of error. A protected operating system cannot be corrupted by any user-level program that cares to write over it; virtual memory and protected address spaces prevent applications from corrupting each other. Password-protected login prevents free-for-all access to files and the use of resource quotas can stop the resource usage of one application preventing another from running. The file system should be recoverable to a consistent state after an unexpected failure.


Compatibility – with existing Microsoft systems, addressing the universal problem that legacy software should continue to run on new operating systems.


Government-certifiable security – for multi-user and business use, to class C2 level initially. This is simply password-protected login, the operating system running in protected mode, protected address spaces and resource quotas.


Performance – the system should be as fast and responsive as possible while meeting the other design constraints.

Following the success of consumer editions of Microsoft Windows, the strategy was to create a family of operating systems to span the range of available computers from laptops to multiprocessor, multi-user workstations. These would support similar graphical user interfaces and the Win32 API, a 32 bit programming interface for application development. Windows NT would also support the APIs presented by other operating systems so that it could host applications developed for MS-DOS, OS/2 or POSIX. Although the POSIX support that is provided is rudimentary, third-party development has produced alternatives that enable a larger range of POSIX operations to be available.
PC hardware had become so powerful that applications which were previously restricted to large, expensive systems ‘in the computer room’ are now feasible for PCs. Similarly, features regarded as standard for many years in larger systems became reasonable to include in a PC operating system. Windows NT introduced security mechanisms such as user logon, resource quotas and object protection (see below) and the virtual memory system provides protected address spaces. The need for protection between applications has been accentuated in recent years, even in single-user workstations, by the pervasive deployment of internet-based networking and the execution of code from untrusted or mutually-conflicting sources.

Structured exception handling controls error handling and provides protected entry to the privileged kernel (via traps or software interrupts) thus contributing towards reliability. The modular structure with interactions through published interfaces also contributes. None of these features is novel, except in the context of PC software.

27.2 System structure

Figure 27.1 shows the overall system structure. The majority of operating system functions are provided within the executive running in privileged mode. The executive has components that implement virtual memory management, process management, I/O and the file system (including network drivers), inter-process communication and some security functions. Object management is generic, is used by all of these functions and is abstracted in a separate executive component.

The executive builds on lower-level facilities provided by the kernel. For instance, the mechanics of storing and resuming thread contexts is a kernel function, but the creation of new processes and threads is managed by the executive. The kernel is also responsible for dispatching interrupts and exceptions to the appropriate part of the executive and for managing basic synchronization primitives. The interface provided by the kernel is private, used only by the higher-level executive functions, see Figure 27.2. The kernel itself interacts with the physical machine through the hardware abstraction layer (HAL) which abstracts the aspects of the system which are machine dependent – for example how to interact with an interrupt controller or how to communicate between CPUs in a multi-processor machine.

(Second edition figure 25.1 near here)

Figure 27.1

Windows 2000 block diagram.

The executive is invoked from user mode through a system call interface. However, applications are expected to use a further level of indirection through protected subsystems that implement conventional programming APIs in terms of these system calls. The figure illustrates three such subsystems, providing OS/2, Win32 and POSIX environments to their respective client processes. These subsystems can either be structured using a client-server model or as shared libraries with which clients link. In practice a combination of both mechanisms is used so that the subsystem can retain control over system-wide data structures (for example the POSIX subsystem records parent-child relationships between the processes that it manages) while allowing more direct access where such protection is not required – for instance translating between file descriptors used by a POSIX process and the underlying identifiers exported by the executive. This represents a limited combination of the microkernel and library-extensible operating systems that we saw in Chapter 26.
 (Second edition figure 25.2 near here)

Figure 27.2

System interfaces.

27.2.1 Executive components

In this section we describe the major components of the executive.


The object manager creates and deletes executive objects, as shown in Figure 27.3. A system call to create any specific type of executive object results in a call from the component of the executive that manages objects of that type to the object manager. Object management is the uniform underlying mechanism for the representation and management of resources and the object manager is involved in all generic operations. In Chapter 24 we saw how UNIX processes used file descriptors as a way of identifying the resources that there were using. Executive object handles are a more general mechanism: they can identify entities such as processes and threads in addition to communication endpoints.


The security reference monitor provides runtime protection for objects and, being involved in object manipulation, can audit their use. The consistent use of object handles to denote resources brings a similar consistency to security management.

The process manager is responsible for processes and threads. A process must be created with one thread to start with, since a thread is the unit of scheduling; more threads may be created as the process progresses. As for UNIX, a process is the unit of resource allocation.


The local procedure call facility (LPC) supports client–server communication.


The virtual memory manager provides a protected address space for each process (shared by its threads) and supports paging.


The I/O system provides device-independent I/O and manages file and network buffers.

(Second edition figure 25.3 near here)

Figure 27.3

Creating executive objects.

27.3 The object model and object manager

The design used in Windows NT and Windows 2000 has taken object-based structuring further than most commercial operating systems. An object is an instance of an object type. An attribute of an object is part of its state (a data field). Object services are the means by which objects are manipulated. The public service interface of Figure 27.2 contains services for executive objects, see also below. The term ‘method’ which is often used for objects’ interface operations is used more specifically here, see later. Some client subsystems such as Win32 and POSIX require that a child process should inherit resources from a parent (recall the UNIX fork operation), and this is easily arranged via object mechanisms.

Objects provide a uniform approach to:


naming – providing human-readable names for system resources;


sharing – allowing resources and data to be shared by processes;


protection – protecting resources from unauthorized access.

The object manager (OM) creates, deletes, protects and tracks the use of executive objects. The executive provides the public interface of the operating system and, in turn, builds on the lower-level mechanisms provided by the kernel through its internal, private interface. The public interface makes available the object types given below. For each object type the manager or subsystem which supports it is given.

Executive objects


process (Process manager)

A program invocation including the address space and resources required to run the program. Resources are allocated to processes.

thread (Process manager)

An executable entity within a process. A thread has a scheduling state, priority and saved processor state if it is not currently executing on a CPU.

section (Memory manager)

A region of memory which may be shared.


file (I/O manager)

An instance of an opened file or I/O device. Notice that, as in UNIX, files and devices are treated uniformly.


port (Local process communication (LPC) facility)

A destination for messages passed between processes; that is, a name for a communication endpoint.


access token (Security system)

A tamper-proof ID containing security information about a logged-on user.


event (Executive support services)

An announcement that a system event has occurred.


event pair (Executive support services)

A notification that a dedicated client thread has copied a message to the Win32 server (used only by the Win32 subsystem).


semaphore (Executive support services)

A counter that regulates the number of threads that can use a resource.


mutant (Executive support services)

A mechanism that provides mutual exclusion (mutex) capabilities for the Win32 and OS/2 environments.


timer (Executive support services)

A counter that records the passage of time.


object directory (Object manager)

A memory-based repository for object names.


symbolic link (Object manager)

A mechanism for referring indirectly to an object name.


profile (Kernel)

A mechanism for measuring the distribution of execution time within a block of code (for performance tuning).


key (Configuration manager)

An index for referring to records in the configuration database.

27.3.1 How executive objects are used

The use of objects is as described in general terms in Section 2.7 and follows the open–use–close model which is familiar from filing systems. Here objects may be persistent, like files, or dynamic, needed only for the duration of a program execution, like threads. For dynamic objects a create operation implies an open operation as well. Persistent objects are opened for use in the usual way.

A hierarchical object naming scheme is provided via directory objects and the object namespace is visible to all processes. This will be discussed in more detail below. Here we need only be aware that an object must have a name to be opened, shared and protected.

A process that knows the name of an object may open the object for some mode of use. An access control check is made and, if the process is authorized to use the object in that mode, an object handle is returned. A security descriptor is attached to the open object so that subsequent calls on the open object can be checked. We have:

handle (open (object-name, mode)

result (service (handle, arguments)

A process acquires handles for all its open objects and these are available for use by its threads. Sharing between processes is also facilitated in that processes sharing an object each have a handle for it. The system can note the number of handles and determine when the open object is no longer in use. Note that this generalizes UNIX’s use of the per-process open file table which contains handles for files, devices and pipes. UNIX pipes would be dynamic objects which are not named in this kind of naming graph.

27.3.2 The structure of an object

Every object has a type which determines its data and the native system services that can be applied to it. An object has a header and a body, see Figure 27.4. The header contains standard data (or attributes) which is controlled by the object manager component of the executive by means of generic object services. These services are the system calls in the public service interface which can be invoked from either user mode or privileged mode, recall Figure 27.2.

(Second edition figure 25.5 near here)

Figure 27.4
Contents of an object header.

In more detail, the standard object header attributes are:


object name
makes an object visible to other processes for sharing


object directory
for the hierarchical object naming structure


security descriptor
access control specification


quota charges
resource charges levied on a process on opening this object


open handle counter
count of open handles to this object


open handle database
list of processes with open handles to this object


permanent/temporary
may the object be deleted when it falls out of use?


kernel/user mode
is the object available in user mode?


type-object pointer
to the type-object which contains attributes common to a set of objects of the same type.

The generic object services on a created and opened object are:


close
closes a handle on the object


duplicate
shares an object by duplicating the handle and giving it to another process


query object
obtains information about an object’s standard attributes


query security
obtains an object’s security descriptor


set security
changes the protection on an object


wait for a single object
synchronizes a thread’s execution with one object


wait for multiple objects
synchronizes a thread’s execution with multiple objects.

27.3.3 Object types

The object body is of no concern to the object manager. It contains type-specific data which is controlled by some other component of the executive; all components may define object types and must then make services available to allow their type-specific attributes to be manipulated. Note that a type-object, pointed to from the object header, contains data that remains constant for all objects of that type. The type-object also maintains a data structure which links all objects of that type as shown in Figure 27.5.

(Second edition figure 25.6 near here)

Figure 27.5
Process objects and the process type-object.

The type-object contains the following:


object type name
name for objects of this type such as ‘process’


access types
types of access a thread may request when opening a handle to an object of this type, such as ‘read’


synchronization capability
whether a thread can wait on objects of this type


pageable/non-pageable
whether the objects can be paged out of memory


(virtual) methods
one or more routines provided by the creating component for the object manager to call at certain points in the object’s lifetime, such as open, close, delete, query-name, parse, security, (the last three relating to secondary domains), see Section 27.3.6.

Figure 27.6 shows an object instance. The generic attributes in the header are in the domain of the object manager. The interface operations which operate on the generic attributes are the system services supported by the OM. The object body is in the domain of the executive component which manages objects of that type. The interface operations which operate on the type-specific attributes are the system services exported by the executive component.

(Second edition figure 25.7 near here)

Figure 27.6
Objects, interfaces and managers.

27.3.4 Object names and directories

Objects are named to achieve identification, location and sharing. Object names are unique within a single system and the object namespace is visible to all processes, see Figure 27.7. Subject to the security reference monitor, Win32 and other subsystems as well as components of the executive can create directory hierarchies since these are simply nested structures comprising directory objects.
(Second edition figure 25.8 near here)

Figure 27.7
Object name hierarchy.

Object names are supplied to the create and open services; as for all objects, handles are used to access open directories. Once a thread has opened a handle to an object directory (with write access) it can create other objects and place them in the directory, see Figure 27.8. The query service scans the list of names and obtains the corresponding location information.

(Second edition figure 25.9 near here)

Figure 27.8
An object directory object.

The naming graph has domains superimposed on it, for example, a subtree of the hierarchy that contains file objects and their directories will be managed by the filing subsystem, see Figure 27.9. Files are persistent objects and the task of locating a given file from a directory entry is a function of file management. We have seen how this may be done in general in Chapter 6 and in UNIX systems in Chapters 24 and 25.

(Second edition figure 25.10 near here)

Figure 27.9
Object naming domains.

Locating a dynamic object, that exists only for the duration of a program execution, from a directory entry is a simpler matter; all that is needed is a pointer to an in-memory object; therefore different executive components are responsible for different portions of the graph.

Symbolic links are implemented as objects. The type-specific attributes include the substitute pathname string and the time of creation. The namespace design allows for extension to external objects in a distributed system. For example, at some point in a pathname an external device name may be detected and network services invoked, see Section 27.8.

27.3.5 Object handles

Each process has an object table which contains all its handles (pointers to open objects). An object handle is an index into a process-specific object table. In Windows 2000 the object table is held as a three-level tree, in much the same way as a mutli-level page table, so that it can provide access to a large number of handles without requiring a single contiguous table structure to be allocated. Figure 27.10 shows two processes sharing an object; each has a handle for it.

(Second edition figure 25.11 near here)

Figure 27.10
Process object tables.

27.3.6 Type-specific object methods

The object manager component of the executive exploits the similarities of objects across all types to manage them uniformly. The OM also allows each executive component which is an object type manager to register with it type-specific object methods. OM calls these at well-defined points, such as on create, open, close, delete and when an object is modified. An example is that the filing system (and not OM) should check whether an object to be closed is holding any locks. For the directory services query, parse and security, methods are called if the object exists in a secondary domain; for example, the first few components of a pathname may be in the domain of the object manager. At some point pathname components from a secondary domain are reached. At this point the OM will call the parse method for the appropriate secondary domain, such as a filing system, and pass the rest of the pathname to it for resolution.

27.3.7 Protecting objects

Class C2 security requires secure login, discretionary access control, auditing and memory protection. After an authenticated login an access token object is permanently attached to the user’s process and serves as an official identifier for authorization and accounting purposes.

Figure 27.11 shows an example of an access token where user JMB belongs to four example groups named LECT, OPERA, WIC and SSC. A default access control list (ACL) is shown as a number of chained access control entries (ACE). If the user does not supply an ACL on creating an object and there is no arrangement to inherit one from other objects then this default ACL is used.

(Second edition figure 25.12 near here)

Figure 27.11
An access token object.

27.4 The kernel

Unlike the rest of the executive, the kernel remains resident and runs without preemption, although interrupts from devices will still be delivered. It is written primarily in C with assembly language for those parts which must execute with maximum possible speed or are processor-specific. The kernel has four main functions:


scheduling threads for execution;


transferring control to handler routines when interrupts and exceptions occur;


performing low-level multiprocessor synchronization;


implementing system recovery procedures after power failure.

Policy/mechanism separation is a design feature of Windows NT and Windows 2000. The kernel provides mechanisms; the executive builds on them and implements policies. Above the kernel, the executive treats threads and other shareable resources as objects and therefore incurs object management overheads as described above for creating, opening, checking access control policy specifications etc. Within the kernel simpler kernel objects are used as described in the next section.

27.4.1 Kernel objects, kernel process and thread objects

Within the kernel simple kernel objects come without the higher-level object machinery and most executive objects encapsulate one or more kernel objects. The kernel object controls the information held on executive-level objects and the executive must make kernel calls to access or update this information.

We shall not study each kernel object in detail. In outline, kernel objects are classified as control objects or dispatcher objects.

Control objects are for controlling various operating system functions and include kernel process objects, asynchronous procedure call (APC) objects, deferred procedure call (DPC) objects, interrupt objects, power-notify objects and power status objects.

Dispatcher objects incorporate synchronization capabilities, alter or affect thread scheduling and include kernel thread objects, kernel mutex objects, kernel mutant objects, kernel event objects, kernel event pair objects, kernel semaphore objects and kernel timer objects.

Figure 27.12 gives the general idea of (executive) process and thread objects encapsulating simpler kernel process and thread objects.

(Second edition figure 25.15 near here)

Figure 27.12
Kernel process and thread objects.

27.4.2 Thread scheduling and dispatching

The kernel implements priority-based, preemptive scheduling of threads. Priority levels 0 (low) to 31 (high) are supported. Levels 16–31 are known as real-time and 0–15 as variable priority with level 0 reserved for use by the system. The dispatcher may therefore be visualized as maintaining a data structure comprising 31 ready queues and a blocked list. The real-time priority levels are intended for use in time-critical systems. In other systems threads will be allocated priorities in the range 1 to 15.

The dispatcher adjusts the priorities of the variable priority processes to optimize system responsiveness; for example, a thread’s priority is raised on becoming runnable after waiting for an event, the amount depending on the type of event; priority is lowered after a thread uses its entire time quantum. If a thread becomes compute-bound and repeatedly uses its timeslice then its priority will decay to its base value which was inherited from its parent process on creation. A thread is created with a base priority in the range of that of its parent plus or minus two. As a thread runs its dynamic priority may range from its base to the highest value 15.

Figure 27.13 shows the thread states and transitions which are as follows:


ready – waiting to run on a processor;


standby – selected to run next on a particular processor;


running – until
(a) preempted by a higher-priority thread,

(b) time quantum used up,

(c) termination,

(d) voluntarily entering the waiting state;


waiting
– entered by:

(a) voluntarily waiting on an object to synchronize its execution,

(b) the operating system can wait on the thread’s behalf,

(c) an environment subsystem can direct the thread to suspend itself,

– when the awaited event occurs the thread moves to the ready or transition state;


transition
– ready for execution but resources are not available,

– when resources become available the thread moves to the ready state;


terminated – entered when the execution finishes. The thread object might or might not then be deleted; it might be reused by the executive.

(Second edition figure 25.16 near here)

Figure 27.13
Thread states and transitions.

Note that we have multiprocessor operation. Suppose a process of priority 7 is made runnable by a process of priority 8 running on processor A and some processor B is running a process with priority less than 7. Then the dispatcher will put the process of priority 7 in standby state for processor B and cause a dispatch interrupt to be sent to processor B. B’s servicing of this interrupt will result in preemption of the running thread, which is set to the ready state, and a context switch to the standby thread. A preempted thread is put to the head of its priority queue whereas normally a thread is queued at the end of its priority queue.

27.4.3 Interrupt and exception handling

Custer (1993) illustrates interrupt and exception handling using the MIPS architecture, which has been used as an example throughout this book. All interrupts are taken initially by the trap handler which disables interrupts briefly while it records the machine state and creates a trap frame from which the interrupted thread can be resumed.

The trap handler determines the condition that caused it to be entered and transfers control to other kernel or executive modules. (Note that this analysis by software is imposed by the architecture. The alternative is hardware decoding of the source of the exception or interrupt with automatic transfer to the corresponding service routine, so-called ‘vectored interrupts’. The trade-offs were discussed in Chapter 3.) If the cause was a device interrupt the kernel transfers control to the interrupt service routine (ISR) provided by the device driver for that device. If the cause was a call to a system service, the trap handler transfers control to the system service code in the executive. The remaining exceptions are fielded by the kernel. Details of how each type of interrupt or exception is handled are given in Custer (1993). Solomon and Russinovich describe the approach taken on Intel x86 processors (2000).

27.5 Processes, threads, fibers and concurrency control

As with UNIX, a process can be considered to be a running instance of an executable program. It has a private address space containing its code and data. As it executes, the operating system can allocate it system resources such as semaphores and communications ports. A process must have at least one thread since a thread is the unit of scheduling by the kernel.

A process executing in user mode invokes operating system services by making system calls. Via the familiar trap mechanism (Section 3.3) its mode is changed to system (privileged) as it enters and executes the operating system and is returned to user mode on its return.

Processes are also represented as objects, so are manipulated using object management services, see Figure 27.14. The access token attribute is that of the user represented by this process, see Figure 27.11. Notice that the process has a base priority used for the scheduling of its threads and a default processor affinity which indicates the set of processors on which the threads of this process can run. The quota limits specify maximum useable amounts of paged and non-paged system memory, paging file space and processor time. The total CPU time and resources used by the process are accounted in execution time, I/O counters and VM operation counters.

(Second edition figure 25.13 near here)

Figure 27.14
Process object.

A process can create multiple threads to execute within its address space and both process objects and thread objects have built-in synchronization capabilities. Once a thread has been created it is managed independently of its parent process. Figure 27.14 shows a typical process and its resources. Figure 27.15 shows a thread object. The client ID identifies the thread uniquely, this is needed when it makes service calls, for example. The thread context includes the thread’s register dump and execution status.

(Second edition figure 25.14 near here)

Figure 27.15
Thread object.

A form of lightweight thread or fiber is also available. Unlike threads, fibers are managed entirely in user mode and are invisible to the kernel and the executive – they follow the pattern of user-level threads introduced in Chapter 4. The kernel manages threads and a running thread can co-operatively switch from one fiber to another under the direction of a SwitchToFiber library operation. Each fiber has an associated saved register state, stack, exception handling information and a per-fiber data value. This user-level scheduling means that care is required in order to use fibers successfully: if a running fiber blocks then this will block the thread that hosts it. An application using fibers can only exploit a multi-processor machine if it has more than one thread and co-ordinates the scheduling of its fibers over them – this necessitates concurrency control in case code executing in separate threads attempts to switch to the same fiber. An application that wishes to use fibers must explicitly create its first by invoking ConvertThreadToFiber.
27.5.1 Thread synchronization

We are familiar (Section 4.4, Chapters 10 and 11) with the requirement for threads to synchronize their activities by waiting for events and signalling their occurrence. Synchronization is implemented within this overall object framework. Synchronization objects are executive objects with which a thread can synchronize and include process, thread, file, event, event-pair, semaphore, timer and mutant objects. The last five of these exist solely for synchronization purposes.

At any time a synchronization object is in one of two states, signalled or non-signalled. These states are defined differently for different objects as follows:

	Object type
	Set to signalled state when
	Effect on waiting threads

	process
	last thread terminates
	all released

	thread
	thread terminates
	all released

	file
	I/O operation completes
	all released

	event
	a thread sets (signals) the event
	all released

	event-pair
	dedicated client or server thread
	other dedicated

	
	 sets the event
	 thread released

	semaphore
	count drops to zero
	all released

	timer
	set time arrives or interval expires
	all released

	mutant
	thread releases the mutant
	one thread released

A thread may synchronize with one or a number of objects and may indicate that it will wait only for a specified time. It achieves this by invoking a wait service provided by the object manager and passing one or more object handles as parameters. For example, a file object is set to the signalled state when a requested I/O operation on it completes. A thread waiting on the file handle is then released from its wait state and can continue.

27.5.2 Alerts and asynchronous procedure calls

It is often useful for one thread to notify another that it should abort. In Section 1.2.1, for example, we saw that several threads might be searching simultaneously for some data item. As soon as one thread solves the problem it should be able to tell the others to stop. This is called an alert. The UNIX kill signal has similar functionality.

An asynchronous procedure call (APC) is a mechanism by which a thread may be notified that it must perform some action by executing a prespecified procedure. Most APCs are generated by the operating system, especially the I/O system. The I/O system is invoked asynchronously. For example, the caller can initiate input then proceed with work in parallel. When the input is complete, the I/O system uses a kernel-mode APC to force the thread (effectively interrupt it) to copy the data into its address space after which the thread may continue its interrupted work.

User-mode APCs are similar except that a thread may control when it will execute the APC. There are two ways in which a thread can control when it receives a user mode alert or APC. Either it calls a native service to test whether it has been alerted (a polling scheme) or it can wait on an object handle, specifying that its wait can be interrupted by an alert. In either case, if a user-mode APC is pending for the thread, it is executed by the thread.

27.5.3 Address-space management

The address space of a process is as shown in Figure 27.16. We have seen exactly this organization in Section 9.3. A paged virtual memory management system is employed, as described in Section 5.5.

(Second edition figure 25.17 near here)

Figure 27.16
Address space layout within a process.

27.5.4 Sharing memory: Sections, views and mapped files

Recall from Chapter 5 that it is desirable for chunks of virtual memory to be shared by several processes to avoid using memory for a copy per process of, for example, compilers and libraries. Section objects, comparable with the segments of Section 5.4, are used to achieve sharing.

A thread in one process may create and name a section object. Threads in other processes may then open this section object and acquire handles to it. After opening, a thread can map the section object, or part(s) of it, into its own or another process’s virtual address space. A mapped portion of a section object is called a view and functions as a window onto the section; the idea is to map only those portions of a (possibly large) section that are required. A thread may create multiple views and different threads may create different views, as shown in Figure 27.17.

(Second edition figure 25.18 near here)

Figure 27.17
Mapping views of a section.

The VM manager also allows section objects to be implemented as mapped files, see Section 6.8. The executive uses mapped files to load executable images into memory. They are also used for a number of I/O and cache management functions.

Figure 27.18 shows a section object. The maximum size is an attribute which, if the object is a mapped file, is the size of the file. The page protection attribute is assigned to all pages when the section is created. The section may be created empty, backed by swap space (the so-called paging file) or loaded with a file (backed by the mapped file). A based section must appear at the same virtual address for all processes sharing it whereas a non-based section may appear at different virtual addresses in different processes.

(Second edition figure 25.19 near here)

Figure 27.18
A section object.

27.5.5 Memory protection

An address space per process, two modes (user and system) of processor operation and page-based protection have been standard in most non-PC operating systems for many years and are used here. Page-level protection may be read-only, read/write, execute-only (if the hardware supports this), guard page, no access or copy-on-write.

In addition to these standard facilities, object-based memory protection is provided. Each time a process opens a handle to a section object or maps a view to it, the security reference monitor checks whether the process attempting the operation is allowed that access mode to the object. For example, if a file is to be mapped, the mode of access required by this process must be specified on the file’s ACL. All objects have ACLs so a check may always be made, although a shareable compiler would have a simple ACL permitting general use.

27.6 I/O subsystem
A design aim was that it should be possible to install, and add or remove dynamically, alternative device drivers in an arbitrary layered structure. For example, a number of existing file systems must be supported including MS-DOS’s FAT, OS/2’s HPFS, the CD-ROM file system CDFS in addition to the ‘native’ file system NTFS. Drivers should be portable and easy to develop, written in a high-level language.

As in all I/O systems concurrency control is crucial, especially as multiprocessor operation is supported. As always, hardware–software synchronization is needed as is mutual exclusion from shared buffer space.

The I/O system is packet driven, that is, every I/O request is represented by an I/O request packet (IRP). A central component, the I/O manager, coordinates all the interactions, see Figure 27.19, passing an IRP in turn to each driver that manipulates it.
(Second edition figure 25.20 near here)

Figure 27.19
I/O to a multi-layered driver.

Notice that we do not have a single level of device handling conceptually below the I/O manager but any number of levels. However, a high-level driver such as a filing system does not interact directly with a lower-level driver such as a disk driver. Each driver operates by receiving an IRP from the I/O manager, performing the operation specified and passing it back to the I/O manager. It may then be passed on to another driver or, if the transaction is complete, the caller may be informed.

As with the Streams interface (Section 25.2) the use of a consistent internal API and data format aids flexibility by enabling a broader variety of module compositions to be developed. For instance, file system mirroring and striping can be provided in terms of IRPs and then composed with the implementation of any file system. Generic tracing and logging functions can also be provided by handling IRPs.
27.6.1 I/O design features

Object model and file abstraction

Programs perform I/O on virtual files, manipulating them by using file handles. All potential sources or destinations for I/O are represented by file objects. The I/O manager dynamically directs virtual file requests from user-level threads to the appropriate file, directory, physical device, pipe, network etc.

Asynchronous I/O calls

We have often seen the problems associated with synchronous I/O, particularly when associated with single-threaded applications. The application must block until the I/O completes, even though processing could continue in parallel with the relatively slow device operation. Asynchronous I/O is supported as well as synchronous: the application need only specify ‘overlapped’ mode when it opens a handle. Services that are likely to involve lengthy I/O operations are asynchronous by default – about one-third of the native services. The underlying I/O system is implemented completely asynchronously, whether the caller is using synchronous or asynchronous mode.

Care must be taken to use asynchronous I/O correctly, in particular a thread must avoid accessing data which is simultaneously being used in an I/O transfer. The calling thread must synchronize its execution with completion of the I/O request, by executing wait on the file handle. Figure 27.20 shows the general scheme.

(Second edition figure 25.21 near here)

Figure 27.20
Asynchronous I/O.

Mapped file I/O and file caching

Mapped file I/O is provided jointly by the I/O system and the virtual memory manager (VMM). A file residing on disk may be viewed as part of a process’s virtual memory. A program can then access the file via the demand paging mechanisms without performing disk I/O and causing the file data to be buffered. It is used for file caching and for loading and running executable programs. It is also made available to user mode.

Execution of asynchronous I/O by system threads

We have seen that, in general, the executive is executed procedurally when user-level threads make system calls into the executive. We now see that, when I/O is asynchronous, the thread may return to user level leaving the I/O call still to be serviced. A special system process exists which initializes the operating system and lives through its lifetime. This process has several worker threads which wait to execute requests on behalf of drivers and other executive components. If a file system or network driver needs a thread to perform asynchronous work, it queues a work item to the system process. A thread in the process is awakened to perform the necessary operations.

27.6.2 I/O processing

File objects provide an in-memory representation of shareable physical resources. The object manager treats file objects like other objects in the first instance. When it needs to initiate a data transfer to or from a device it calls the I/O manager. Figure 27.21 shows the contents of file objects and the services available to operate on them; that is, to operate on the open files or physical devices they represent.

(Second edition figure 25.22 near here)

Figure 27.21
A file object.

A file object’s attributes relate to the open file and include the current byte pointer, whether concurrent access is possible, whether I/O is synchronous or asynchronous, cached or not cached and random or sequential. Note that there are several file objects for a given file if a number of processes are reading the file concurrently.

If the file object represents a persistent object, such as a file or directory, additional attributes may be set or queried via the services. These include time of creation, time of last access, time last modified, time of last time change, file type and the current and maximum size. This information is held in persistent storage with the file or directory.

27.6.3 Windows Driver Model

Device drivers interact with the kernel and executive by following the Windows Driver Model (WDM) which is common between Windows 2000, Windows 98 and Windows Millennium Edition. The term ‘device driver’ is used here very generally: it would include modules such as the previously-mentioned logger which handle IRPs but do not themselves interact directly with a hardware device. It also includes file system drivers that map file-based operations to block-based ones (both expressed as IRPs) and also network redirectors that map local file-system operations into invocations on a remote network file server.

Within WDM there are three kinds of driver. Firstly, bus drivers are those which manage one of the communication busses within the system – for example there will be a bus driver for the PCI bus, one for the USB bus (if present) and so on. These drivers monitors the status of the respective busses, performing power management and, where supported, detecting the arrival or removal of plug-and-play devices. The second kind of WDM driver is a function driver. These perform the classical device management functions, mapping the particular interface exposed by a hardware device into the IRP interface expected by the higher levels of the system. They use the HAL in order to interact with the hardware. In principle this means that a function driver for a particular kind of PCI network card on one machine could work on any other machine supporting that same card. The final kind of driver is a filter driver which acts purely in terms of IRPs.

Each driver provides a series of routines through which it interacts with the I/O manager:


An initialization routine which is executed when the driver is first loaded and a corresponding unload routine that is called before the driver is removed.

An add-device routine which allocates a new device object representing a plug-and-play device that has become available.

A set of dispatch routines which are invoked to service each kind of IRP. For example there are DispatchRead and DispatchWrite operations.

A start I/O routine which can be used in simple drivers which support only a single IRP at a time (perhaps because they interact directly with a hardware device that has this restriction). Most drivers support multiple outstanding IRPs.


An interrupt service routine that is invoked in response to an interrupt from a device that the driver is managing and a Deferred Procedure Call routine that performs deferred processing in the same way as suggested in Section 25.2.3.

27.7 The NT filing system, NTFS

The power and capacity of modern PCs makes it feasible to use them for applications that would in former days have been restricted first to mainframes and more recently to network-based distributed systems for the workplace. PCs are now capable of functioning as file servers, compute servers and database servers. They are capable of running engineering and scientific applications and they will be used for large corporate systems which are networked.

Early PC filing systems, such as MS-DOS FAT, are totally inadequate for such large-scale applications. Even the more recent OS/2 HPFS was found to need modification; for example, HPFS uses a single block size of 512 bytes for storage allocation and has a maximum file size of 4 GB. The Windows NT team therefore embarked on the design of a new filing system – NTFS. This continues to be used in Windows 2000.
27.7.1 NTFS requirements


Recoverability – it should be possible to restore the filing system to a consistent state after a crash. The ‘volume inaccessible’ problem, familiar to PC users when the single copy of system data resides on a block which has become bad, is overcome by maintaining redundant copies of key system data and journaling updates.

Security – authenticated login and an access check against the file’s ACL when file objects are opened and used.


Data redundancy and fault tolerance for application data – since it is envisaged that Windows NT and Windows 2000 will be used for a wide range of advanced applications. Corporate data must not be lost on media failure so redundant copies must be held. The layered I/O structure allows different disk drivers to be loaded dynamically. It can be arranged that all data is written both to a primary and to a mirror disk for example. Disk striping can also be built in.

Large disks and large files – The size of data fields which represent disk and file size should not restrict these sizes. Also, each component of a pathname (a file or directory name) can be up to 255 characters in length.

27.7.2 New features of NTFS


Multiple data streams – A number of streams may be open simultaneously to a single file. Typical syntax is:

myfile.dat:stream2

An example is that one stream can be used for data and another for logging.


Unicode-based names – A general, 16 bit encoding scheme is used so that files are transferable without restriction. Each character in each of the world’s languages is represented uniquely. Filenames can contain Unicode characters, embedded spaces and multiple periods.


General indexing facility – File names and attributes are sorted and indexed for efficient location.


Bad sector remapping.


POSIX support – Case-sensitive names can be used. The time a file was last modified is available. Hard links are supported but not symbolic links in the first instance.


Removable disks – that is, mountable filing systems.

27.7.3 NTFS design outline

We have seen that a virtual file abstraction is used for all I/O. System calls are made by subsystems (on behalf of their clients) or by library code (on behalf of high-level programs) to open and use file objects in order to perform all I/O. We are now concerned with file objects that correspond to files and directories as opposed to physical devices.

Figure 27.22 shows how the layering of drivers can be used by NTFS. We see a fault-tolerant driver interposed transparently between the NTFS driver and the disk driver. The fault-tolerant driver can ensure that data is written redundantly so that if one copy is corrupted a second copy can be located – for example using RAID-1 striping as described in Section 6.6. The figure also shows the executive components that are integrated closely with NTFS.

(Second edition figure 25.23 near here)

Figure 27.22
NTFS and related executive components.

The log file service (LFS) maintains a log of disk writes. This log file is used to recover an NTFS formatted volume in the case of a system failure. The cache manager (CM) provides system-wide caching services for NTFS and other file system drivers. These may be remote, network-based file systems. File caching is managed by mapping files into virtual memory which is read and written to perform file I/O operations. On a cache miss the VM manager calls NTFS to access the disk driver to obtain the file contents from disk. There are also various background activities in the cache manager, for example to flush the cache to disk periodically.

We have studied transaction processing concepts in Part III of this book. LFS is using a similar technique to that described in Chapter 21 on database recovery. NTFS guarantees that I/O operations which change the structure of the filing system are atomic. We have studied the problems of non-atomic file operations on many occasions.

Figure 27.23 outlines the in-memory (general, object-based) and on-disk data structures used by NTFS. The user has opened, and so has handles for, two streams to the file, each with a stream control block (SCB). Both of these point into a single file control block (FCB) associated with the open file. From the FCB the on-disk data on the file can be located, in the first instance as a record in the master file table (the equivalent to the metadata table of Chapter 6 or UNIX’s inode table). Extent-based storage allocation, called runs or non-resident attributes, is used to manage the file data. This supports continuous media with contiguous allocation on disk, see Section 6.5.3.

(Second edition figure 25.24 near here)

Figure 27.23
Outline of NTFS data structures.

Custer (1994) is devoted entirely to the filing system and further design details may be found there.

27.8 Networking

Windows 2000 supports a wide range of network protocols, drawing on those developed for earlier Microsoft operating systems as well as those which have gained currency within the internet. This section describes the major APIs that are available to an application programmer. In each case instances of the resource are exposed by the executive as objects. However, the interface used by the application program will depend on the environment subsystem that it is using – an interface based on object handles is provided by the Win32 environment whereas one based on file descriptors is exposed to POSIX applications. As usual Solomon and Russinovich supply further details (2000).
Named pipes

These provide reliable bidirectional communication between two endpoints, typically a client and a server. They can be used either within a single machine for communication between processes or, with some transparency, for communication across a network.
The Universal Naming Convention (UNC) is used to identify such pipes: names take the form ‘\\computer\Pipe\name’ in which ‘computer’ specifies the machine on which the pipe has been created, ‘Pipe’ is a constant string indicating the kind of resource being accessed and ‘name’ indicates the particular pipe to access on the specified machine. In contrast, a named pipe on UNIX is identified purely within a local context and cannot be used for communication between machines. As usual, applications may wish to use a separate name service to translate between higher level names, indicating the kind of service required, and the name of the particular computer and pipe that provides that service. Using the internet protocol suite named pipes may be implemented over TCP.

Mailslots

These provide unreliable unidirectional message-based communication. They may be implemented over UDP and, as with that protocol, expose a broadcast operation. Mailslot names take the form ‘\\computer\Mailslot\name’.

Windows sockets

The winsock API provides analogues of the BSD sockets interface for direct access to protocols such as UDP and TCP. To aid server implementers, Windows 2000 provides a TransmitFile operation that behaves as with the sendfile system call that we introduced in Section 25.4. A further operation, AcceptEx, combines a connection-accept, a query of the new client’s network address and a read of any data already received from the client.

Remote procedure call

A straightforward RPC facility is provided that broadly follows the model of Section XXX. A client application links against a library of RPC stubs which translate local procedure calls into network communication, for example over a TCP connection or over a named pipe. The server uses a corresponding library to perform the reverse process. A variety of authentication and encryption schemes can be integrated, for instance Kerberos or SSL.
Common Internet File System

Certain components of the I/O management system within the executive provide access to remote file systems using the Common Internet File System (CIFS) protocols. These are an extension of the earlier Server Message Block (SMB) schemes. A pathname which is passed to the I/O system on an I/O request may be detected as referring to a non-local object; for example, a non-local disk name may be encountered which is the root of an external filing system. As for all I/O, the I/O system will create an IRP (I/O request packet) and, in this case, will pass it to a file system redirector, as shown in Figure 27.24. It is the responsibility of the redirector to create the illusion of a local filing system for local clients by holding data on open files and maintaining network connections.

(Second edition figure 25.25 near here)

Figure 27.24
Client–server network support.

At the server side the incoming request will be passed up to the server file system. This is not implemented as a multi-threaded process as might be expected but instead as a driver. This allows IRPs to be passed efficiently between drivers within the I/O system, in this case to the appropriate local file system driver.

A distributed cache coherence protocol is used to allow client machines to cache data that they are accessing over CIFS. The redirector may request opportunistic locks (oplocks) on a file which, if granted, permit it to cache the file’s contents on either an exclusive or shared basis rather than needing to involve the server in each access. A batch mode oplock allows contents to be cached between uses of the file – it is particularly suitable for files which are frequently accessed but only for brief periods of time. The locks are opportunistic in that they are used merely in expectation of enhancing the performance of the system, not to provide mutual exclusion.
27.9 Summary

Windows NT and Windows 2000 have a well-defined modular structure although the privileged executive is by no means a minimal microkernel. It contains a great deal of functionality including the filing system, although I/O drivers can be loaded dynamically. The fact that protected address spaces are provided allows protected subsystems to be built and prevents interference between them. Also, the executive is protected from the systems running above it. In these features we have long-established software technology.

More novel aspects of the design are:


the generic use of objects throughout the system, including within the executive;


multi-threaded processes with threads as the unit of scheduling by the kernel and library support for fibers (user-level threads);


asynchronous (non-blocking) I/O with asynchronous notification of completion;


dynamically configurable, multi-level device drivers;


preemptive, priority-based scheduling, including both fixed-priority, real-time processes and variable-priority processes. This scheduling is implemented both for user-level processes and for execution of the executive;


(associated with the previous point) the provision of synchronization and mutual exclusion, including for kernel-mode processes;


multiprocessor operation (possible because of the last two features);


a filing system that is capable of supporting large-scale applications which may have requirements for networking, transactions and recoverability of data;


file system operations guaranteed atomic.

The power and capacity of the modern PC has made it potentially able to support a virtually unlimited range of applications. The first generation of PC operating systems lacked almost all of the design features necessary to support advanced applications and it was essential to replace them. The design is based on good practice established over many years. So far we have not seen the generality expressed in the vision for Windows NT – of coexisting subsystems and general interworking across architectures. Windows NT and 2000 are at times perceived by its users to be the legacy Windows software rather than the well-designed underlying operating system.

Exercises
27.1
Describe the functions of the Object Manager in Windows 2000. Which UNIX abstraction is the closest analogue of an object handle?

27.2
What is an IRP? What advantages and disadvantages are introduced by using them in the I/O subsystem over using ad-hoc per-device interfaces?
27.3
Compare and contrast the distinction between processes, threads and fibers introduced in Section 27.5 with the concepts of Solaris processes, threads and LWPs from Section 25.6.

27.4
Section 27.2 described how a programming environment such as POSIX could be provided by a combination of a shared library used by applications and a subsystem process with which all POSIX applications communicate using IPC.

(a)
Why are both components necessary?

(b)
Discuss how functionality could be split between them in providing (i) the basic UNIX process management functions from Chapter 24, (ii) the sockets interface from Chapter 25 and (iii) SVr4 shared memory segments from Chapter 25.

